integral.py

Created by claralgrd1007

Created on May 21, 2025

458 Bytes

PRIMITIVES u’+v’=u+v u’un = un+1/n+1 u’/u = ln(u) u’/rac u = 2 rac u u’eu = eu

COSINUS SINUS periodique si -> f(x+T)=f(x) cos(x+2pi)=cos(x) sin(x+2pi)=sin(x) paire si f(-x)=f(x) fonc cos est paire-> cos(-x)=cos(x) imapire si = f(x)=f(-x) sin impaire -> sin(x)=sin(-x) derivable -> cos’(x)=-sin(x) sin’(x)=cos(x)

f’(x)=-u’(x)sin(u(x)) et g’(x)=u’(x)cos(u(x)) ex = f(x)=cos(3x+1) u=3x+1 u’= 3 donc f’(x)=3sin(3x+1)

INTEGRAL IPP feulle


PRIMITIVES 
u'+v'=u+v
u'un = un+1/n+1
u'/u = ln(u)
u'/rac u = 2 rac u
u'eu = eu

COSINUS SINUS 
periodique si -> f(x+T)=f(x)
cos(x+2pi)=cos(x)
sin(x+2pi)=sin(x)
paire si f(-x)=f(x)
fonc cos est paire-> 
  cos(-x)=cos(x)
imapire si = f(x)=f(-x)
sin impaire -> sin(x)=sin(-x)
derivable -> cos'(x)=-sin(x)
sin'(x)=cos(x)

f'(x)=-u'(x)sin(u(x))
et g'(x)=u'(x)cos(u(x))
ex = f(x)=cos(3x+1)
u=3x+1 u'= 3
donc f'(x)=3sin(3x+1)

INTEGRAL 
IPP feulle

During your visit to our site, NumWorks needs to install "cookies" or use other technologies to collect data about you in order to:

With the exception of Cookies essential to the operation of the site, NumWorks leaves you the choice: you can accept Cookies for audience measurement by clicking on the "Accept and continue" button, or refuse these Cookies by clicking on the "Continue without accepting" button or by continuing your browsing. You can update your choice at any time by clicking on the link "Manage my cookies" at the bottom of the page. For more information, please consult our cookies policy.