PRIMITIVES u’+v’=u+v u’un = un+1/n+1 u’/u = ln(u) u’/rac u = 2 rac u u’eu = eu
COSINUS SINUS periodique si -> f(x+T)=f(x) cos(x+2pi)=cos(x) sin(x+2pi)=sin(x) paire si f(-x)=f(x) fonc cos est paire-> cos(-x)=cos(x) imapire si = f(x)=f(-x) sin impaire -> sin(x)=sin(-x) derivable -> cos’(x)=-sin(x) sin’(x)=cos(x)
f’(x)=-u’(x)sin(u(x)) et g’(x)=u’(x)cos(u(x)) ex = f(x)=cos(3x+1) u=3x+1 u’= 3 donc f’(x)=3sin(3x+1)
INTEGRAL IPP feulle
PRIMITIVES u'+v'=u+v u'un = un+1/n+1 u'/u = ln(u) u'/rac u = 2 rac u u'eu = eu COSINUS SINUS periodique si -> f(x+T)=f(x) cos(x+2pi)=cos(x) sin(x+2pi)=sin(x) paire si f(-x)=f(x) fonc cos est paire-> cos(-x)=cos(x) imapire si = f(x)=f(-x) sin impaire -> sin(x)=sin(-x) derivable -> cos'(x)=-sin(x) sin'(x)=cos(x) f'(x)=-u'(x)sin(u(x)) et g'(x)=u'(x)cos(u(x)) ex = f(x)=cos(3x+1) u=3x+1 u'= 3 donc f'(x)=3sin(3x+1) INTEGRAL IPP feulle