proba.py

Created by baylemaxime34

Created on December 21, 2023

963 Bytes


P(A)
Pa(B)= P(AB)/P(A) -> proba conditionnelle
P(AB) = p(A)*Pa(B) = p(B)*Pb(A)
P(A̅) =1-P(A)
0<=P(A)<=1
A et A̅ forment une partition de l'univers
Univers = omega 

Formule des probas totales :
Ex -> P(G) = P(G∩R) + P(G∩U) + ...
C'est la somme des chemins où G est réalisé

Evénements indépendants :
P(AB)=P(A)*P(B)
Pa(B)=P(B)

Epreuve de Brenoulli :
2 issues -> Succés ou échec
Espérance de X est E(X)=p
Variance de X est V(X)=p(p-1)
Ecart-type de X est o(X)=(p(p-1))
En faisant la loi de probabilité (tableau)
p = p1*x1 + p2*x2 + ... + pn*xn

Loi binomiale :
JUstification -> épreuve de bernoulli 
+ répétition identique et indépendante
P(X=k) = (n)*p^k*(1-p)^n-k
         (k)
Espérance de X est E(X)=np
Variance de X est V(X)=np(p-1)
Ecart-type de X est o(X)=(np(p-1))

Intervalle de fluctuation centré :
Faire alpha/2 (généralement 0.025)
Voir si -> P(X<a) <= alpha/2
et si P(X<b) <= alpha/2
OUI -> [a;b] fluctuation centré

During your visit to our site, NumWorks needs to install "cookies" or use other technologies to collect data about you in order to:

With the exception of Cookies essential to the operation of the site, NumWorks leaves you the choice: you can accept Cookies for audience measurement by clicking on the "Accept and continue" button, or refuse these Cookies by clicking on the "Continue without accepting" button or by continuing your browsing. You can update your choice at any time by clicking on the link "Manage my cookies" at the bottom of the page. For more information, please consult our cookies policy.