Si lim f(x) = L, alors c’est une asymptote horizontale (n-> +inf ou n-> -inf) Si lim f(x) = +inf ou -inf, alors c’est une asymptote verticale (n-> A) Lim (1/x) quand n tend vers 0+ = +inf Lim (1/x) quand n tend vers 0- = -inf Théorème des croissances composés : Lim (e^x/x^n) = +inf Lim (x^n/e^x) = 0 Lim x^n*e^x = 0 Limites quand n->+inf : Lim x = +inf Lim 1/x = 0+ Lim √x = +inf Lim 1/√x = 0+ Lim x^2 = +inf Lim 1/x^2 = 0+ Lim x^n = +inf Lim 1/x^n = 0+ Lim e^x = +inf Lim 1/e^x = 0+ Limites quand n-> -inf : Lim x = -inf Lim 1/x = 0- Lim x^2 = +inf Lim 1/x^2 = 0+ Lim x^3 = -inf Lim e^x = 0+ Lim x^2n+1 = -inf Lim 1/x^2n+1 = 0- Lim x^2n = +inf Lim 1/x^2n = 0+