eqdiff.py

Created by aubry-pineau

Created on March 09, 2023

882 Bytes


Cas des eq diff type y'=a*y

solution eq diff y'+a*y=0
-a est une constante reelle
-y est une fonction de t sur R

y(t)=k*e-a*t

exemple : 
  y'-6y=0
  
résolution :
  y(t)=k*e6*t
  
vérification :
  y(t)=ke6*t
  y'(t)= 6ke6*t
  
comme y'-6*y :
  6ke6*t - 6*ke6*t=0
  
Cas des eq diff type y'=a*y+b

y=k*e-a*x+b/a

exemple :
  résoudre : y'-6y=5
  
résolution : y'+(-6)y=0 ; a=-6 b=5

y'(t)= k*e6*t=5/-6=k*e6*t-5/6

vérification :
  y(t)=k*e6*t-5/6
  
  y'(t)=6ke6*t
  
= 6ke6*t - 6*ke6*t-5/6*6
  6ke6*t - 6ke6*t + 5 = 5
  
eq diff 1er ordre :
  y'+a*y=b
  
exemple :
  dO/dt + O = 6avec O(0)=-1

dO/dt=1O=6    a=1  b=6

solutions = O(t)=k*e-t + 6

2) O(t)=k*e-t+6 ; O(0)=-1

=> -1=k*e-0 + 6
=> -1=k+6
=>  k=-7

(E) a pour solution unique :
  O(t)=-7*e-t + 6
  
  
Calculer : 
  
  f: x-->e2x
  f'(x)=2*e2x = 2*f(x)
donc f verifie la relation :
  f'-2xf = 0
  
  

During your visit to our site, NumWorks needs to install "cookies" or use other technologies to collect data about you in order to:

With the exception of Cookies essential to the operation of the site, NumWorks leaves you the choice: you can accept Cookies for audience measurement by clicking on the "Accept and continue" button, or refuse these Cookies by clicking on the "Continue without accepting" button or by continuing your browsing. You can update your choice at any time by clicking on the link "Manage my cookies" at the bottom of the page. For more information, please consult our cookies policy.