rappsi.py

Created by arthurboubault

Created on February 22, 2022

1.23 KB


ce qui sor= rentre*bloc
bloc= s/e
condition de Heaviside on a laplace
cano: k/1+ 2z/w0 p + 1/w0^2 p^2
chaine dir/ 1+ chaine dir*chaine sec
dirac rep impulsionele 
tt t /= 0 deltat=0
unité rep indic tt t>/0 u(t)=1
rampe tt t >0 r(t)=t
sinus tt t f(t)=sin(wt).u(t)
rapidit
precison cons-val fina sys
stabilité
depassement= val 1 dep-cons/cons

th de la v finale:
lim t->+8 w(t)= lim p->0 p*Omega(p)
=lim p->0 p*H(p)/*U(P)
principe super: Omega=H1*U+H2*CR+...
dec en elmt simple:
ex: k/1+taup *U0/p 
=B/1+taup + A/p
mm denominateur, dev, identification
attention ne pas ts dev atau+b=0
pas b=0 et atau=0
autre ex: 5/(p+3)^2 +10^4 * 100/p
= B/p + Cp+D/(p+3)^2 +10^4

deplacement de sommateurs:
devant un bloc: H(p) en ftbo et ftbf
derriere: 1/H(p) en ftbo (retour)
deplacement noeuds= inverse du somm

liaison:
encastrement: tt pt 0 pr tt
pivot d'axe x: tt point wx
glissiere de dir x: Vx
helicoidale x: wx pwx
pivot gliss x: wx Vx
rotule bloqué en x: wy wz
rotule: wx wy wz
plane de normale y: Vx wy Vz
annulaire d'axe x: wx wy wz Vx
rectiligne de l x et de normale y:
  wx wy Vx Vz
ponctuelle de normale y: wx wy wz Vx Vz

si on cherche V B 2/1 
si B app a 2:
  on peut dériver le vecteur 
  position
mvt de translation= pas de
vecteur rotation
  

During your visit to our site, NumWorks needs to install "cookies" or use other technologies to collect data about you in order to:

With the exception of Cookies essential to the operation of the site, NumWorks leaves you the choice: you can accept Cookies for audience measurement by clicking on the "Accept and continue" button, or refuse these Cookies by clicking on the "Continue without accepting" button or by continuing your browsing. You can update your choice at any time by clicking on the link "Manage my cookies" at the bottom of the page. For more information, please consult our cookies policy.