phrsf.py

Created by arthurboubault

Created on November 16, 2021

1.06 KB


oscill:
sans exi: md2x/dt2=-hdx/dt -k(leq+x-l0)
a leqilibre leq=l0
dc md2x/dt2 + h dx/dt +kx=0
pfd sur x: md2x/dt2 +hdx/dt + kx=F cos(wt)
forme cano: d2x/dt2 +w0/Q dx/dt + w0^2x=F/m cos(wt)
en rsf: sol x(t)=Xcos(wt+ph) 
signal cmplex associé: x= X exp(j(wt+ph))
d'amplitude X=Xejph
der=*jw et int=/jw
en c l'equa deient:
  (-w^2 + jw0w/Q +w0^2)X=F/m
ph=arg(X) et arg=arctan im/re
modX=rac im^2+re^2 dc ici
mod X= F/m / rac (w0^2-w^2)+(www0/Q)^2
en comp: u=Zi  Y=1/Z  Z=R+jx
argz = argu-argi
mod z = U/I
z=r y=1/R  
z=jlw y=1/
z=1/jcw y=...
en serie Zs=z1+z2...
en //: yp=y1+y2 et zp= z1z2/z1+z2
PENSER AU DIV DE TENS/COURANT
  
Pour rlc en rsf:
calc ZE (serie)  deduire i et I
diviser par R 
on a alors I= A/1+jQ(w/w0 - w0/w)
Ampli = mod I =A/rac...
lim0 I=0 lim8I(w)=0
bande pass = imax/rac2: 
  calc A/rac(1+Q^2(...)^2) = A/rac2
dc res Q^2(...)^2=1
soit sans les carre=+-1
dc+-ww0=Qw^2-Qw0^2
on fait delta + on cherche les racines
et on a delta w = w1-w2=w0/Q
Phase: 
  =arg(I)=argA- arg(1+jQ(...)
  =-arctan(Q(...))
pour w->0 tanph=+8 donc ph=pi/2
pourw-> 8 ph-> -pi/2

During your visit to our site, NumWorks needs to install "cookies" or use other technologies to collect data about you in order to:

With the exception of Cookies essential to the operation of the site, NumWorks leaves you the choice: you can accept Cookies for audience measurement by clicking on the "Accept and continue" button, or refuse these Cookies by clicking on the "Continue without accepting" button or by continuing your browsing. You can update your choice at any time by clicking on the link "Manage my cookies" at the bottom of the page. For more information, please consult our cookies policy.