methao.py

Created by arthurboubault

Created on February 08, 2022

641 Bytes


La solution gÈnÈrale de líÈquation di§Èrentielle 
 ay0 + by = 0 est
y = Cert  avec cste et r = b/a sol
d l'EC: ar+b=0

La solution de líÈquation y'' + w^2y = 0 
est y = A sin(wt) + B cos(wt)
o ̆ A et B sont deux constantes 
(Èquation de líoscillateur harmonique).
    
sol de ay'' +by' +cy = 0
líÈquation caractÈristique ar2 + br + c = 0
en remplaÁant y par 1, y' par r et
y'' par r^2
si delta>0:
  deux racines -b+-racine delta/2a
  sol= y = Aer1t + Ber2t
delta=0 :
  1 rac = -b/2a
  sol = y = ert (At + B)
delta <0:
  r=alpha+ibeta et r/= alpha-ibeta
  sol y=  ealphat [A sin (betat) + B cos (betat)]

    
    

During your visit to our site, NumWorks needs to install "cookies" or use other technologies to collect data about you in order to:

With the exception of Cookies essential to the operation of the site, NumWorks leaves you the choice: you can accept Cookies for audience measurement by clicking on the "Accept and continue" button, or refuse these Cookies by clicking on the "Continue without accepting" button or by continuing your browsing. You can update your choice at any time by clicking on the link "Manage my cookies" at the bottom of the page. For more information, please consult our cookies policy.