# Solar v.1.01 NW 23/10/2020 # https://nsi.xyz/solar # par Jil Saint-Martin et Emmy Vadon def get_infos(): fnop = lambda : None screen_w, screen_h, color_bits, font_w, font_h, poly_has_color, poly_set_pixel, poly_show, poly_fill_rect, poly_fill_circle, poly_draw_ellipse, poly_sleep, poly_get_key, poly_draw_string, poly_pause, poly_set_buffer, poly_sleep, show_need_pause_on_exit = 320, 222, [5, 6, 5], 0, 18, 1, fnop, fnop, fnop, fnop, fnop, fnop, fnop, fnop, fnop, fnop, fnop, 0 try: import graphic, nsp, cas, time def col3_2_rgb(c, bits, bgr): return c[2*bgr]//2**(8 - bits[0]) + c[1]//2**(8 - bits[1])*2**bits[0] + c[2*(not(bgr))]//2**(8-bits[2])*2**(bits[0] + bits[1]) def poly_fill_rect(x1, y1, x2, y2, c): graphic.draw_filled_rectangle(int(x1), int(y1), int(x2), int(y2), c) def poly_fill_circle(x, y, r, c): graphic.draw_filled_circle(int(x), int(y), int(r), c) def poly_draw_ellipse(x, y, rx, ry, c): graphic.draw_arc(int(x), int(y), int(rx), int(ry), 0, 360, c) def poly_draw_string(s, x, y, cf, cb): st = 'draw_string("' + s + '", ' + str(float(x)) + ', ' + str(float(y)) + ', ' + str(col3_2_rgb(cf, color_bits, 1)) + ', ' + str(col3_2_rgb(cb, color_bits, 1)) + ')' print(st) cas.caseval(st) def poly_get_key(): key = int(cas.caseval("get_key()")) # left up down rightenteresc ( ) d = {2:0, 3:1, 4:2, 1:3, 5:4, 9:5, 133:40, 134:41} for k in d: if key == d[k]: return k return 0 def poly_sleep(d): s = time.monotonic() + d*1000 while time.monotonic() < s: pass font_w, poly_set_pixel, poly_show, poly_pause = 15, graphic.set_pixel, graphic.show_screen, nsp.waitKeypress except: try: # NumWorks import kandinsky, ion, time from math import sqrt font_w, poly_set_pixel, poly_draw_string, poly_sleep = 11, kandinsky.set_pixel, kandinsky.draw_string, time.sleep def poly_draw_line(x1, y1, x2, y2, c): m, a1, b1, a2, b2 = 0, int(x1), int(y1), int(x2), int(y2) if (x2 - x1) ** 2 < (y2 - y1) ** 2: m, a1, a2, b1, b2 = 1, b1, b2, a1, a2 if min(a1, a2) != a1: a1, b1, a2, b2 = a2, b2, a1, b1 for k in range(a2 - a1 + 1): a, b = a1 + k, int(b1 + (b2 - b1) * k / ((a2 - a1) or 1)) poly_set_pixel((a, b)[m], (b, a)[m], c) def poly_fill_rect(x, y, w, h, c): kandinsky.fill_rect(int(x), int(y), int(w), int(h), c) def poly_draw_ellipse(x, y, rx, ry, c): for h in range(-int(ry), int(ry)+1): w = sqrt(max(0, rx*rx*(1-h*h/ry/ry))) x1, x2 = int(x - w), int(x + w) yc = y + h poly_set_pixel(x1, yc, c) poly_set_pixel(x2, yc, c) for w in range(-int(rx), int(rx)+1): h = sqrt(max(0, ry*ry*(1-w*w/rx/rx))) y1, y2 = int(y - h), int(y + h) xc = x + w poly_set_pixel(xc, y1, c) poly_set_pixel(xc, y2, c) def poly_fill_circle(x, y, r, c): for h in range(-int(r), int(r)+1): w = sqrt(max(0, r*r*(1-h*h/r/r))) x1, x2 = int(x - w), int(x + w) yc = y + h poly_draw_line(x1, yc, x2, yc, c) def poly_pause(): def key_down(): for k in range(53): if ion.keydown(k): return 1 return 0 while key_down(): pass while not (key_down()): pass def poly_draw_string(s, x, y, cf, cb): kandinsky.draw_string(s, x, y, cf, cb) def poly_get_key(): # left up down right enter esc ( ) d = {2:0, 3:1, 4:2, 1:3, 5:52, 9:5, 133:33, 134:34} for k in d: if ion.keydown(d[k]): return k return 0 except: pass return screen_w, screen_h, font_h, poly_set_pixel, poly_fill_rect, poly_fill_circle, poly_draw_ellipse, poly_draw_string, poly_show, poly_pause, poly_get_key, poly_sleep from math import sqrt from random import randint screen_w, screen_h, font_h, set_pixel, fill_rect, fill_circle, draw_ellipse, draw_string, show, pause, get_key, sleep = get_infos() def cercle(x0,y0,r,c,e): for i in range(2*e): rt = max(0,r-i*0.5) if rt: draw_ellipse(x0,y0,rt,rt,c) def cercle_plein(x0,y0,r,c1,e,c2): fill_circle(x0,y0,r-e,c2) fill_circle(x0,y0,r,c1) def cercle_grade(x0,y0,R,c1,e,c2): for i in range(R): cercle(x0,y0,i,(c1[0]+i*(c2[0]-c1[0])//R,c1[1]+i*(c2[1]-c1[1])//R,c1[2]+i*(c2[2]-c1[2])//R),1) systeme = (("Soleil",'centre du syteme solaire','0','1,989 × 10^30','696340', '0'), ("Mercure",'88','57','3,285 × 10^23','2439.7', '0'), ("Venus",'225','104','4,867 × 10^24','6051.8', '0'), ("Terre",'365','150','5,972 × 10^24','6371', 'Lune'), ("Mars",'687','220 ','6.39 × 10^23 ','3389,5','2'), ("Jupiter",'12','780 ','1.898 × 10^27','69911','3'), ("Saturne",'29','1,493','5.683 × 10^26','58232','~ 200'), ("Uranus",'84','2,9592','8.681 × 10^25','25362','27'), ("Neptune",'165','4,4762','1.024 × 10^26','24622','14'), ) coord = [[160,111,16], [180,110,6], [185,95,8], [120,100,9], [160,160,9], [115,150,15], [200,50,12], [170,20,9], [55,80,8]] couleur1 = ((255,255,0), (251,136,7), (190,183,150), (30,160,173), (245,0,0), (162,125,105), (200,169,133), (191,209,232), (0,33,240)) couleur2 = ((235,128,0), (106,73,32), (121,104,83), (6,67,29), (101,12,12), (134,56,32), (189,138,80), (117,163,224), (5,15,81)) for k in range(len(coord)): coord[k][0] = coord[k][0]*screen_w//320 coord[k][1] = coord[k][1]*screen_h//222 coord[k][2] = coord[k][2]*screen_w//320 fill_rect(0,0,screen_w,screen_h,(0,0,0)) cercle_grade(screen_w//2,screen_h//2,197*screen_w//320,(0,35,143),10,(0,0,0)) cercle_grade(screen_w//2,screen_h//2,40*screen_w//320,couleur2[0],2,(0,35,143)) cercle_grade(screen_w//2,screen_h//2,coord[0][2],couleur1[0],2,couleur2[0]) def degrade(c1,c2,k): return (c1[0]+int(k*(c2[0]-c1[0])),c1[1]+int(k*(c2[1]-c1[1])),c1[2]+int(k*(c2[2]-c1[2]))) def tirage(n): for i in range(n): x=randint(0,screen_w) y=randint(0,screen_h) fill_rect(x,y,2,2,couleur(x,y)) def couleur(x,y): c=(couleur2[0],(13,89,175),(13,89,175),(44,122,211),(207,230,230),(207,230,230)) d=sqrt((x-screen_w//2)**2+(y-screen_h//2)**2)/(screen_w/10+.5) return degrade(c[int(d)],c[(int(d)+1)%6],d-int(d)) tirage(250) couleur, tirage = None, None c_blanc=(255,255,255) r_orb = (22,32,42,52,62,76,92,109) for i in range(8): cercle(screen_w//2,screen_h//2,r_orb[i],(119,135,135),1) r_orb = None def solar_systeme_dessine(n, degrade=1): # Affiche un corps du sytème solaire, numéro du corps dans systeme[], degradé cercle_grade(coord[n][0], coord[n][1], coord[n][2], degrade and couleur1[n] or c_blanc, 2 + 9 * (n != 0), degrade and couleur2[n] or c_blanc) def solar_systeme_texte(n=42, t=0): #affichage du texte en bas, de couleur associée à omega, avec les diverse infos try: get_keys() os = (192,53,53) except: os = (255,183,52) if n == 42 : fill_rect(1,screen_h-font_h,screen_w,font_h,os) draw_string("nsi.xyz/solar par Emmy & Jil ",2,screen_h-font_h,c_blanc,os) else: fill_rect(1,screen_h-font_h,screen_w,font_h,os) s = systeme[n][t] if t==1 and n: s = "periode de revo: " + s + ((n <=4 ) and " jours" or " ans") elif t==2: s = "dis soleil: " + s + " milli" + ((n <= 5 ) and "on" or "ard") + "s km" elif t==3: s = "masse: " + s + " kg" elif t==4: s = "rayon: " + str(s) + " km" elif t==5: s = "satellites connus: " + str(s) draw_string(s,2,screen_h-font_h,c_blanc,os) solar_systeme_texte() def navigation(): #navigation grâce aux flèches position = 0 texte = 0 key = 0 while key != 9: show() key = get_key() if key >=1 and key <=4: if key <= 2: #Gauche Droite avant = position position = min(max(position+2*(key == 1)-1, 0), 8) # le soleil [0] + 8 planète if avant != position: solar_systeme_dessine(avant) solar_systeme_dessine(position, 0) elif key >= 3: #haut bas texte = max(min(texte + 2*(key == 3) - 1, 5), 0) # Il faut donc avoir 5 données en plus du nom dans systeme[] solar_systeme_texte(position,texte) sleep(0.120) solar_systeme_dessine(0,0) show() sleep(1) solar_systeme_dessine(0) for k in range(1,9): cercle_grade(coord[k][0],coord[k][1],coord[k][2],couleur1[k],10,couleur2[k]) navigation()