rotsierp(n=6, n0=0, s=1, h=222, m=3) Draws adjacent Sierpiński triangles starting with iterations and increasing by each time and with pixels of margin for a global height of pixels.
import turtle from math import sqrt def sierp(n, l): a, r = 60, 1 if n <= 0: for i in range (3): turtle.fd(l) turtle.left(a * 2) else: l /= 2 n -= 1 sierp(n, l) turtle.fd(l) sierp(n, l) turtle.bk(l) turtle.left(a) turtle.fd(l) turtle.right(a) r += 3 * sierp(n, l) turtle.left(a) turtle.bk(l) turtle.right(a) return r def rotsierp(n=6, n0=0, s=1, h=222, m=3): r = 0 l = (h - m - m*sqrt(3)) / sqrt(3) turtle.penup() turtle.left(90) turtle.fd(m / 2) turtle.right(90) for k in range(n0, n0 + n): turtle.pendown() t = sierp(k,l) turtle.penup() turtle.right(90) turtle.fd(m) turtle.left(30) r += t print("+ " + str(t) + " triangle" + ((t > 1) and "s" or "")) return r t = rotsierp(6, 0, 1, 222) print("= " + str(t) + " triangles")