recurrence.py

Created by anaellebaecher

Created on October 17, 2023

562 Bytes


Soit nEN et Pn:"2^n>n"
1)INITIALISTAION

. on verifie lexpression pour le
1er term cad n=1
-> 2^n>n  si n=1
   2^1>1  donc P1 est vraie
   
2)HEREDITE

. supposons quil existe un entier
  k tel que Pk vraie:"2^k>k"
. demontrons que Pk+1 est vraie:
  "2^(k+1)>k+1"
SI: 2^k>k      ]x2
ALORS: 2x2^k>2xk
       2^(k+1)>2k  or 2k=k+k>k+1
       2^(k+1)>k+1      car k>1
Pk+1 est vraie 
et 
Pn est hereditaire

3)CONCLU
. P0 est vraie
. Pn est hereditaire
->donc dapres le principe de
raisonnement par recurrence
Pn est vraie pour tout nEN:
  "2^n>n"

During your visit to our site, NumWorks needs to install "cookies" or use other technologies to collect data about you in order to:

With the exception of Cookies essential to the operation of the site, NumWorks leaves you the choice: you can accept Cookies for audience measurement by clicking on the "Accept and continue" button, or refuse these Cookies by clicking on the "Continue without accepting" button or by continuing your browsing. You can update your choice at any time by clicking on the link "Manage my cookies" at the bottom of the page. For more information, please consult our cookies policy.