derivation.py

Created by anaali

Created on April 02, 2024

896 Bytes


(1 / x) = -1 / x2
(1/x**n)= -n / x**n+1
( sqrt(x) ) = 1 / 2sqrt(x)
(u + v) = u + v
(u  v) = u  v
(k * u) = k * u
(u * v) = uv + uv
(1 / v) = -v/ v2
(u / v) = (u* v u * v)/v2
g(ax+b) = a * g(ax + b)
cos(u)=-sin(u)*u'
sin(u)=cos(u)*u'
_______________________
VoU=V(U(x))
f=VoU f'=U'=V'oU

f=sqrt(U) U>0
f'=U'/2sqrt(U)

f=(U)**n si n<0 U!=0
f'=nU'* U**n-1

f=e**U
f'=U'e**U
_______________________
f est convexe:
  f'  croissante
  f'' positive
pt inflexion:
f'' s'annule changeant signe
_______________________
continue si 
lim f(x)= lim f(x)=f(a)
x=>a      x=>a
x<a       x>a

relation recurence Un+1=f(Un)
pt fixe:
  f(I) appartient a I
  U0 appartient a I
  converge vers l
  f est continue
f(x)=x donne l
_______________________
Taux de variation
t(h)= (f(a+h)- f(a)) /h

Equation reduite de la tangente
y= f'(a)(x-a)+f(a)

Coef direct
(yB-yA)/ (xB-Xa)

During your visit to our site, NumWorks needs to install "cookies" or use other technologies to collect data about you in order to:

With the exception of Cookies essential to the operation of the site, NumWorks leaves you the choice: you can accept Cookies for audience measurement by clicking on the "Accept and continue" button, or refuse these Cookies by clicking on the "Continue without accepting" button or by continuing your browsing. You can update your choice at any time by clicking on the link "Manage my cookies" at the bottom of the page. For more information, please consult our cookies policy.