rel_fond_thermo.py

Created by alten01

Created on May 04, 2025

918 Bytes


permet de regrouper 1er et 2eme
principe en une seule eq
representation energetique
dU=tdS-pdV+Xdx
representation entropique
dS=1/T dU+P/T dV -X/T dx

elle permet de definir les variables
intensives
representation energetique
T=(dU/dS)V,x
-p=(dU/dV)S,x
X=(dU/dx)S,V
representation entropique
1/T=(dS/dU)V,x
P/T=(dS/dU)U,x
-X/T=(dS/dx)U,V

on rappelle que pour une transfo 
rev, on peut def les coef thermiques
par les relations
isobare(T,V)=dQ=CvdT+ldV
isochore(T,P)=dQ=CpdT+hdp
isotherme(p,V)=dQ=lambdadp+udV
dW=-pdV

elle mene a des identites thermody
dU=dW+dQ
dU=CvdT+(l-p)dV
dU=CpdT+hdp-pdV
dU=lambdadp+(u-p)dV
dS=dQ/T
dS=Cv/T dT+l/T dV
dS=Cp/T dT+H/T dp
dS=lambda/T dp+u/T dV

et celles ci nous donnent
la premiere relation de clapeyron
l=T(dP/dT)V
=T beta p
la seconde relation de Clapeyron
h=-T(dV/dT)P
=-T alpha V

coef thermoelastiques
alpha=1/V(dV/dT)p
beta=1/p(dp/dT)V
xT=-1/V(dV/dP)T

During your visit to our site, NumWorks needs to install "cookies" or use other technologies to collect data about you in order to:

With the exception of Cookies essential to the operation of the site, NumWorks leaves you the choice: you can accept Cookies for audience measurement by clicking on the "Accept and continue" button, or refuse these Cookies by clicking on the "Continue without accepting" button or by continuing your browsing. You can update your choice at any time by clicking on the link "Manage my cookies" at the bottom of the page. For more information, please consult our cookies policy.