g_poss_unique_pt_fixe.py

Created by alten01

Created on December 11, 2024

692 Bytes


En deduire que g possede un unique
point fixe xbarre et localiser 
xbarre entre deux entiers consecutifs
a et b

Un pt fixe xbarre de g verifie
g(xbarre)=xbarre

graph correspond a intersection
de g et x=y donc verif calculatrice

g(xbar)=xbar=>g(xbar)-xbar=0

Cela signifie que resoudre g(x)=x
revient a chercher les sol de 
f(x)=g(x)-x=0 de sorte que les 
pts fixes de g soient les zeros
de f

f est derivable sur R et 
f'(x)=g'(x)-1

on fait le tableau de variations
donc f'(x)=0

f continue et monotone donc TVI
E!xbar app R tq f(xbar)=0,
donc g(xbar)=xbar

Pour localiser xbar, on evalue
fx en qq points :
f(0)=ln(3/2)>0
f(1)=ln(5/2-1)<0
Ainsi xbar app [0;1]

During your visit to our site, NumWorks needs to install "cookies" or use other technologies to collect data about you in order to:

With the exception of Cookies essential to the operation of the site, NumWorks leaves you the choice: you can accept Cookies for audience measurement by clicking on the "Accept and continue" button, or refuse these Cookies by clicking on the "Continue without accepting" button or by continuing your browsing. You can update your choice at any time by clicking on the link "Manage my cookies" at the bottom of the page. For more information, please consult our cookies policy.