formules.py

Created by alex-juge84

Created on March 10, 2022

1008 Bytes


from math import *

Légende :
d(f) = variation(f)
\v   = vecteur v
k    = constante

#--------------------------------
Energies

Ec = 1/2 * m * v2
Epp = m * g * h
Em = Ec + Epp

Si on néglige les forces non-conservatives :
d(Em) = 0 <=> Em est constante
Sinon,
d(Em) = W(f) (forces non-conservatives)

W(P) = m*g*(za-zb)
W(Elec) = q*U = q(Va-Vb)

#--------------------------------
Particule champs électrique

\a = +-q/m * \E

     e-     e
+ |-----|------|
- |  +  |   -  |
  |-----|------|
- |  -  |   +  |
+ |-----|------|

Dans (o,i,j): 
  ax = 0
  ay = +-q/m*0E

#-----------------------------
Mouvement champs gravitationel

3 lois de kepler
1 : héliocentrique => orbite = ellipse, soleil = foyer
2 : Lois des aires
3 : T^2 / r^3 = 4*pi^2 / G*M = k

F = G * (m1 * m2) / d^2 
\F = F*\n

accélération :
  \a * mS = \F => \a = G * mT / r^2 * \n
vitesse : 
  v^2 / r = GmT/r^2 => v = sqrt(GmT/r)
période :
  T = (2*pi*r)/v
  T = (2*pi*r)/sqrt(GmT/r)
  T = 2*pi*sqrt(r^3/G*mT)

During your visit to our site, NumWorks needs to install "cookies" or use other technologies to collect data about you in order to:

With the exception of Cookies essential to the operation of the site, NumWorks leaves you the choice: you can accept Cookies for audience measurement by clicking on the "Accept and continue" button, or refuse these Cookies by clicking on the "Continue without accepting" button or by continuing your browsing. You can update your choice at any time by clicking on the link "Manage my cookies" at the bottom of the page. For more information, please consult our cookies policy.