meca20.py

Created by acrozak02

Created on January 17, 2021

908 Bytes


# Type your text here
mouvement dans un champ de pesanteur
(vect g vers le bas)
E(somme)(vect)F=m(vect)g=m(vect)a
donc vect a=vect g
le vect accelera est vertical vers le bas
coordonés cartesiens
vect a {ax=0 ay=-g az=0

determiner vect vitesse
vect a{ax=0 ay=-g az=0
primitive
vect v {vx=Cx vy=-g*t+Cy vz=Cz
vect v0{vx0=v0*cos(alpha)=Cx
        vy0=v0*sin(alpha)=-g*0+Cy
        vz0=0=Cz
il vient:{Cx=v0*cos(alpha)
          Cy=v0*sin(alpha)
          Cz=0
donc vect v{vx=vo*cos(alpha)
            vy=-g*t+v0*sin(alpha)
            vz=0

vect v primitive 
vect OM{x=v0*cos(alpha)*t+Dx
        y=-1/2g*t**2+v0*sin(alpha)*t+Dy
        z=Dz
vect OM0{x0=0=v0*cos(alpha)*0+Dx
         y0=0=-1/2g*0**2+v0*sin(alpha)*0+Dy
         z0=0=Dz
il vient {Dx=0
          Dy=0
          Dz=0
donc coordonnée cartesiennes
de vect OM{x=v0*cos(alpha)*t
           y=-1/2g*t**2+v0*sin(alpha)*t
           z=0

During your visit to our site, NumWorks needs to install "cookies" or use other technologies to collect data about you in order to:

With the exception of Cookies essential to the operation of the site, NumWorks leaves you the choice: you can accept Cookies for audience measurement by clicking on the "Accept and continue" button, or refuse these Cookies by clicking on the "Continue without accepting" button or by continuing your browsing. You can update your choice at any time by clicking on the link "Manage my cookies" at the bottom of the page. For more information, please consult our cookies policy.