meca1.py

Created by acrozak02

Created on January 17, 2021

1.13 KB


# Type your text here

vect OM(t){x(t)y(t)
OM=racine x**2+y**2

vect v(t)=(dvectOM/dt)t
        =vect v=dvectOM/dt
vect v(m.s-1)
t en s
vect OM en m

vect v={Vx=dx/dt Vy=dy/dt
v=racine Vx**2+Vy**2
vect v toujours tangente a la trajectoire
et dirigé dans le sens du mouvement

vect a=vect dv/dt
v en ms-1
vect a en m.s-2
t en s

vect a{ax=dvx/dt ay=dvy/dt
a=racine ax**2+ay**2
le vect acceleration a est colineaire
et de meme sens que le vect variation
de vitesse delta vect a

mouvement rectiligne=droite
dans rectiligne uniforme vect a=vect0
direction:droite support de la trajectoire
sens:celui du vect v si mouv accelere
sinon opposé si ralentit

mouvement circulaire:
repere frenet
-vect v et tangent a la trajectoire
donc vect v=v vect ut
-vect a=v**2/R(vect)un+dv/dt*(vect)ut
an=v**2/R acceleration normale
at=dv/dt acceleration tangentielle
 si at est nulle dv/dt=0 donc v est constante

deuxieme lois de newton 
referenciel galiléen =verifie le principed'inertie

E(vect)F=m*(vect)aG(en bas)
vect F(en N)
m en kg
vect a en m.s-2
si systeme immobile E(vect)F=vect 0
alors m(vect)aG=vect0
vect aG=vect0 et vect vG=vect cte
R(en m)
EF=m*a

During your visit to our site, NumWorks needs to install "cookies" or use other technologies to collect data about you in order to:

With the exception of Cookies essential to the operation of the site, NumWorks leaves you the choice: you can accept Cookies for audience measurement by clicking on the "Accept and continue" button, or refuse these Cookies by clicking on the "Continue without accepting" button or by continuing your browsing. You can update your choice at any time by clicking on the link "Manage my cookies" at the bottom of the page. For more information, please consult our cookies policy.