limitesuite.py

Created by acrozak02

Created on May 24, 2021

694 Bytes


# Type your text here
lim+8=1/n^k=0 pareil 1/racin(n)
theroreme des gendarmes

pour suite geometrique limite
q<=-1 alors pas de limite
-1<q<1 converge vers 0
q=1 converge vers 1
q>1 converge vers+8

si un croissante et nonmajorée
alors un diverge vers +8

si un decroissante et non minorée
alors un diverge vers -8

si un croissante et majorée alors converge
si un decroissante et minorée alors un converge
 
lim-8=-8 et -8 =-8 par somme
-8 et +8 indeterminée par somme

par produit 

0*8 FI

par quotient 

l et +8 = 0
 
0 et 0 =FI et 8 et 8 =Fi

EX 
limite -n^2+(-1)^n
(-1)^n<=1
-n^2+(-1)^n<=-n^2+1 soit un<=-n^2 +1
a apres lim et ca fais -8

theoreme des gendarmes


During your visit to our site, NumWorks needs to install "cookies" or use other technologies to collect data about you in order to:

With the exception of Cookies essential to the operation of the site, NumWorks leaves you the choice: you can accept Cookies for audience measurement by clicking on the "Accept and continue" button, or refuse these Cookies by clicking on the "Continue without accepting" button or by continuing your browsing. You can update your choice at any time by clicking on the link "Manage my cookies" at the bottom of the page. For more information, please consult our cookies policy.