corolaire.py

Created by acrozak02

Created on February 01, 2021

894 Bytes


# Type your text here

sur [a;b] d apres le tableau
de variation g admet un minimum egal
à ...sur [a;b].donc l'equation
g(x)=-1.5 n'admet pas de solution
dans cette intervalle.

sur[a,b] d'apres le tableau de variation
ci-dessus , la fonction g est continue
et strictement decroissante sur[a;b]
le réel k=-1.5 est compris entre
g(-1)=..>-1.5
g(0)=..<-1.5
-1.5 appartient [g(0);g(-1)]
donc d'apres le corollaire du tvi
l'equation g(x)=-1.5 admet exactement
une solution alpha appartenant à[a;b].

sur[a,b] d'apres le tableau de variation
ci-dessus , la fonction g est continue
et strictement croissante sur[a;b]
le réel k=-1.5 est compris entre
g(-1)=..>-1.5
g(0)=..<-1.5
-1.5 appartient [g(0);g(-1)]
donc d'apres le corollaire du tvi
l'equation g(x)=-1.5 admet exactement
une solution alpha appartenant à[a;b].

conclusion:g(x)=-1.5 admet exactement
...solution sur [a;b].

During your visit to our site, NumWorks needs to install "cookies" or use other technologies to collect data about you in order to:

With the exception of Cookies essential to the operation of the site, NumWorks leaves you the choice: you can accept Cookies for audience measurement by clicking on the "Accept and continue" button, or refuse these Cookies by clicking on the "Continue without accepting" button or by continuing your browsing. You can update your choice at any time by clicking on the link "Manage my cookies" at the bottom of the page. For more information, please consult our cookies policy.